
The Concurrent Calculi Formalisation Benchmark

https://concurrentbenchmark.github.io/

1 Challenge Description

1.1 Preliminaries

First, we list some common notions and conventions that we use in the challenges.
Since the calculi under study are somewhat different, each section lists the changes
that apply.

We assume the existence of some set of base values, represented by the symbols
a, b, . . ., of some set of variables, represented by the symbols l,m, . . ., and of some
set of names, represented by the symbols x, y,1 We assume that all of these
sets are infinite and that their elements can be compared for equality.

The syntax of processes includes: the process 0 or inaction, a process which
can do nothing. The process P | Q is the parallel composition of process P and
process Q. The two components can proceed independently of each other, or they
can interact via shared names.

For communication, processes include input and output, whose signature
signature depends on the calculus being value-passing or name-passing. We use
here the metavariables c, k to abstract over this choice — i.e. c may be either
a value or a variable or a name, whereas k may be a variable or a name. The
process x!c.P is an output, which can send c via x, then continue as P . The
process x?(k).P is an input, which can receive a c via x, then continue as P with
the received element substituted for k. The input operator thus binds k in P .

The process (νx) P is the restriction of the name x to P , binding x in P .
The process !P is the replication of the process P . It can be thought of as the

infinite composition P | P | · · ·. Replication makes it possible to express infinite
behaviours.

We use the notation fn(P) to denote the set of names that occur free, bn(P)
to denote the set of names that occur bound in P and fv(P) to denote the set of
variables that occur free in P . We use the notation bv(P) for the set of variables
that occur bound in P . We use the notation P{a/l} to denote the process P with
base value a substituted for variable l. Similarly, P{x/y} denotes the process
P with name x substituted for name y. We use the notation Pσ to denote the
process P with a finite number of arbitrary substitutions applied to it.

1 Unlike the standard π-calculus, we distinguish variables from names to better control
the expressiveness of the calculi under study, and the scope of the corresponding
challenges: the key distinction is that names are used as communication channels
(and can be sent and received in the scope extrusion challenge), whereas variables
are only bound by inputs and cannot be restricted, sent nor received, in the style of
value-passing CCS [3].

https://concurrentbenchmark.github.io/

2 https://concurrentbenchmark.github.io/

Two processes P and Q are α-convertible, written P =α Q, if Q can be
obtained from P by a finite number of substitutions of bound variables. As
a convention, we identify α-convertible processes and we assume that bound
names and bound variables of any processes are chosen to be different from the
names and variables that occur free in any other entities under consideration,
such as processes, substitutions, and sets of names or variables. This is justified
because any overlapping names and variables may be α-converted such that the
assumption is satisfied.

A context is obtained by taking a process and replacing a single occurrence
of 0 in it with the special hole symbol [·]. As a convention, we do not identify
α-convertible contexts. A context acts as a function between processes: a context
C can be applied to a process P , written C[P], by replacing the hole in C by P ,
thus obtaining another process. The replacement is literal, so names and variables
that are free in P can become bound in C[P].

We say that an equivalence relation S is compatible if (P,Q) ∈ S implies that
for any context C, (C[P], C[Q]) ∈ S.

1.2 Challenge: Linearity and Behavioural Type Systems

This challenge formalises a proof that requires reasoning about the linearity of
channels. Linearity is the notion that a channel must be used exactly once by a
process. This is necessary to prove properties about session type systems, and
the key issue of this challenge is reasoning about the linearity of context splitting
operations. Linear reasoning is also necessary to formalise, e.g ., linear and affine
types for the π-calculus and cut elimination in linear logics.

The setting for this challenge is a small calculus with a session type system,
the syntax and semantics of which are given below. The calculus is a fragment of
the one presented in [5], formulated in the dual style of [1].

The main objective of this challenge is to prove type preservation (also
known as subject reduction), i.e., that well-typed processes can only transition
to processes which are also well-typed in the same context. The second objective
is to prove type safety, i.e., that well-typed processes are also well-formed in the
sense that they do not use endpoints in a non-dual way.

Syntax. The syntax is given by the grammar

v, w ::= a | l
P,Q ::= 0 | x!v.P | x?(l).P | (P | Q) | (νxy) P

where a value v, w, . . . is either a base value a or a variable l.
The output process x!v.P sends the value v via x and then continues as P .

The intention is that the value v must be a base value when it is actually sent, and
this is enforced in the semantics later on. The input process x?(l).P waits for a
base value from x and then continues as P with the received value substituted for
the variable l. The process (νxy) P represents a session with endpoints named x
and y which are bound in P . In P , the names x and y can be used to exchange

https://concurrentbenchmark.github.io/

The Concurrent Calculi Formalisation Benchmark 3

messages over the session (sending on x and receiving on y or vice versa). Note
that in this calculus channels cannot be sent in messages, therefore the topology
of the communication network described by a process cannot change. Also, there
is no recursion or replication in the syntax, hence no infinite behaviours can be
expressed. In particular, we only model linear (as opposed to shared) channels.

Semantics. We describe the actions that the system can perform through a small
step operational semantics. As usual, we use a structural congruence relation that
equates processes that we deem to be indistinguishable. Structural congruence is
the smallest compatible equivalence relation that satisfies the following axioms:

Sc-Par-Comm

P | Q ≡ Q | P

Sc-Par-Assoc

(P | Q) | R ≡ P | (Q | R)

Sc-Par-Inact

P | 0 ≡ P

Sc-Res-Par

(νxy) P | Q ≡ (νxy) (P | Q)

Sc-Res-Inact

(νxy) 0 ≡ 0

Sc-Res

(νx1y1) (νx2y2) P ≡ (νx2y2) (νx1y1) P

The operational semantics are defined as the following relation on processes:

R-Com

(νxy) (x!a.P | y?(l).Q | R) → (νxy) (P | Q{a/l} | R)

R-Res
P → Q

(νxy) P → (νxy) Q

R-Par
P → Q

P | R → Q | R

R-Struct
P ≡ P ′ P ′ → Q′ Q ≡ Q′

P → Q

Note that reductions are allowed only for restricted pairs of session endpoints.
This makes it possible to formulate subject reduction so that the typing context
is exactly the same before and after each reduction. Note also that due to rule
R-Com, the process y?(l).P can receive any base value. Since the rule R-Com
only applies to sending base values, there is no way to send a variable or a name.

Session Types. Our process syntax allows us to write processes that are ill
formed in the sense that they either use the endpoints bound by a restriction to
communicate in a way that does not follow the intended duality, or attempt to send
something which is not a base value. As an example, the process (νxy) (x!a.0 |
y!a.0) attempts to send a base value on both x and y, whereas one of the names
should be used for receiving in order to guarantee progress. Another example
is the process (νxy) (x!l.0 | y?(l).0), which attempts to send a variable that is
not instantiated at the time of sending. To prevent these issues, we introduce a
session type system which rules out ill-formed processes.

4 https://concurrentbenchmark.github.io/

Syntax. Our type system does not type processes directly, but instead focuses
on the channels used in the process. The syntax of session types S, T , unrestricted
typing contexts Γ and linear typing contexts ∆ is as follows:

S, T ::= end | base | ?.S | !.S
Γ ::= · | Γ, l
∆ ::= · | ∆,x : S

The end type end describes an endpoint over which no further interaction is
possible. The base type base describes base values. The input type ?.S describes
endpoints used for receiving a value and then according to S. The output type
!.S describes endpoints used for sending a value and then according to S.

Typing contexts gather type information about names and variables. Un-
restricted contexts are simply sets of names since we only have one base type.
Linear contexts associate a type to endpoints. We use the comma as split/union,
overloaded to singletons, and · as the empty context. We extend the Barendregt
convention [2] to contexts, so that all entries are distinct. Note that the order in
which information is added to a type context does not matter. We denote with
end(∆) a (linear) context whose names all have type end.

Since we need to determine whether endpoints are used in complementary
ways to determine whether processes are well formed, we need to formally define
the dual of a type as follows:

?.S = !.S !.S = ?.S end = end

Note that the dual function is partial since it is undefined for the base type.

Typing Rules. Our type system is aimed at maintaining two invariants:

1. No endpoint is used simultaneously by parallel processes;
2. The two endpoints of the same session have dual types.

The first invariant is maintained by linearly splitting type contexts when typ-
ing compositions of processes, the second by requiring duality when typing
restrictions.

We have two typing judgments: one for values, and one for processes. The
typing rules for values are:

T-Base

Γ ⊢v a : base

T-Var

Γ, l ⊢v l : base

The typing rules for processes are as follows:

T-Inact
end(∆)

Γ ;∆ ⊢ 0

T-Par
Γ ;∆1 ⊢ P Γ ;∆2 ⊢ Q

Γ ;∆1, ∆2 ⊢ P | Q

T-Res
Γ ; (∆,x : T, y : T) ⊢ P

Γ ;∆ ⊢ (νxy) P

T-Out
Γ ⊢v v : base Γ ;∆,x : T ⊢ P

Γ ; (∆,x : !.T) ⊢ x!v.P

T-IN
(Γ, l); (∆,x : T) ⊢ P

Γ ; (∆,x : ?.T) ⊢ x?(l).P

https://concurrentbenchmark.github.io/

The Concurrent Calculi Formalisation Benchmark 5

Note that we do not need a judgment for typing channels, since it is already
folded into the T-In and T-Out rules.

Challenge. The objective of this challenge is to prove subject reduction and
type safety for our calculus with session types. We start with some lemmata:

Lemma 1 (Weakening).

1. If Γ ;∆ ⊢ P , then (Γ, l);∆ ⊢ P .
2. If Γ ;∆ ⊢ P , then Γ ; (∆,x : end) ⊢ P .

Proof. By induction on the given derivations.

Lemma 2 (Strengthening).

1. If (Γ, l) ⊢v v : base, then Γ ⊢v v : base.
2. If Γ ; (∆,x : T) ⊢ P and x ̸∈ fn(P), then Γ ;∆ ⊢ P

Proof.

1. By immediate case analysis on the given derivation.
2. By induction on the derivation of Γ ; (∆,x : T) ⊢ P .

T-Inact Since end(∆), we can just reapply the rule without x : T .
T-Par In this case, we have that ∆,x : T = ∆0, ∆1. By cases on which

context x is in, we just apply the induction hypothesis on that context.
T-Res Without loss of generality, we assume that x /∈ {y, z}, for P =

(νyz) P ′. Since Γ ; (∆, y : T0, z : T0, x : T) ⊢ P ′, by induction hypothesis,
we have Γ ; (∆, y : T0, z : T0) ⊢ P ′. Applying again T-Res, we have
Γ ;∆ ⊢ (νyz) P ′.

The remaining cases are analogous.

Lemma 3 (Substitution). If (Γ, l);∆ ⊢ P and Γ ⊢v a : base then Γ ;∆ ⊢
P{a/l}.

Proof. By induction on the derivation of (Γ, l);∆ ⊢ P .

T-Inact Immediate since end(∆).
T-Par For P = P0 | P1, we apply the induction hypothesis on the derivations

for P0 and P1.
T-Res Immediate by the induction hypothesis.
T-Out Let P = x!v.P ′. We have that (Γ, l) ⊢v v : base. We have Γ ⊢v v : base

by strengthening, so we build the conclusion with the induction hypothesis
and T-Out.

The remaining cases are analogous.

To prove that process equivalence preserves typing, it is convenient to first
consider the smallest relation closed under the six axioms of structural congruence,
denoted by · a≡ ·:

6 https://concurrentbenchmark.github.io/

Lemma 4 (Preservation for
a≡). If P

a≡ Q, then Γ ;∆ ⊢ P iff Γ ;∆ ⊢ Q.

Proof. By case analysis on the Sc rule applied:

Par-Comm/Assoc By rearranging sub-derivations noting that order does not
matter for linear contexts.

Par-Inact Right-to-left by Lemma 2. Vice-versa, by picking T to be end and
applying Lemma 1, part 2.

Res-Par By case analysis on x : T being linear or end and applying weakening
and strengthening accordingly.

Res-Inact: By Lemma 1.
Res Noting that order does not matter.

Now, following Sangiorgi and Walker [4], we formalize the compatible equiva-
lence relation induced by · a≡ ·, which we still write as · ≡ · as the smallest relation
closed under reflexivity, symmetry, transitivity and the following condition:

Cong
P

a≡ Q

C[P] ≡ C[Q]

Lemma 5 (Preservation for ≡). If P ≡ Q, then Γ ;∆ ⊢ P iff Γ ;∆ ⊢ Q.

Proof. By induction on the structure of the derivation of P ≡ Q, with an inner
induction of the structure of a process context.

Refl Immediate.
Sym By IH.
Trans By two appeals to the IH.
Cong By induction on the structure of C. If the context is a hole, apply

Lemma 4. In the step case, apply the IH: for example if C has the form C ′ | R,
noting that (C ′ | R)[P] is equal to C ′[P] | R we have Γ ;∆ ⊢ (C ′ | R)[P] iff
Γ ;∆ ⊢ (C ′ | R)[Q] by rule T-Par and the IH.

Theorem 1 (Subject reduction). If Γ ;∆ ⊢ P and P → Q, then Γ ;∆ ⊢ Q.

Proof. By induction on the derivation of P → Q. The cases R-Par and R-Res
follow immediately by IH. Case R-Struct appeals twice to preservation of ≡
(Lemma 5) and to the IH. For R-Com, suppose that T-Res introduces in ∆ the
assumptions x : !.U, y : ?.U . Building the only derivation for the hypothesis, we
know that ∆ = ∆1, ∆2, ∆3 where Γ ;∆3 ⊢ R. We also have Γ ; (∆1, x : U) ⊢ P ,
D2 a proof of Γ, l; (∆2, y : U) ⊢ Q and V a proof of Γ ⊢v a : base. From D2 and
V we use the substitution lemma 3 to obtain Γ ;∆2, y : U ⊢ Q{a/l}. We then
conclude the proof with rules T-Par (twice) and T-Res.

To formulate safety, we need to formally define what we mean by well-formed
process. We say that a process P is prefixed at variable x if P ≡ x!v.P ′ or
P ≡ x?(l).P ′ for some P ′. A process P is then well formed if, for every P1,

https://concurrentbenchmark.github.io/

The Concurrent Calculi Formalisation Benchmark 7

P2, and R such that P ≡ (νx1y1) . . . (νxnyn) (P1 | P2 | R), with n ≥ 0, it
holds that, if P1 is prefixed at x1 and P2 is prefixed at y1 (or vice versa), then
P1 | P2 ≡ x1!a.P

′
1 | y1?(l).P ′

2, for some P ′
1 and P ′

2.
Note that well-formed processes do not necessarily reduce. For example, the

process
(νx1y1) (νx2y2) (x1!a.y2?(l).0 | y2!x2.y1?(l).0)

is well formed but also irreducible.

Theorem 2 (Type safety). If Γ ; · ⊢ P , then P is well-formed.

Proof. In order to prove that P is well-formed, let us consider any process of
the form (νx1y1) . . . (νxnyn) (P1 | P2 | R) that is structurally congruent to P .
Clearly, by Lemma 5, well-typedness must be preserved by structural congruence.
Moreover, assume that P1 is prefixed at x1 and P2 is prefixed at y1 such that
P1 ≡ x1!v.P

′
1 (the opposite case proceeds similarly). We need to show that

P2 ≡ y1?(l).P
′
2. This can be easily done by contradiction. In fact, if P2 ≡ y1!v.P

′
2

then the typing rule for restriction would be violated since the type of x1 and y1
cannot be dual.

Corollary 1. If Γ ; · ⊢ P and P → Q, then Q is well formed.

1.3 Challenge: Name Passing and Scope Extrusion

This challenge formalises a proof that requires explicit scope extrusion. Scope
extrusion is the notion that a process can send restricted names to another
process, as long as the restriction can safely be “extruded” (i.e., expanded) to
include the receiving process. This, for instance, allows a process to set up a
private connection by sending a restricted name to another process, then using
this name for further communication. The key issue of this challenge is reasoning
about names that are “in the process” of being scope-extruded, which often
presents difficulties for the mechanisation of binders.

Reasoning about scope extrusion explicitly can sometimes be avoided by
introducing a structural congruence rule into the semantics, but doing this
means we lose information about the scope when reasoning about the semantics.
Explicitly reasoning about scope extrusion is necessary to describe, e.g ., runtime
monitors and compositions of systems.

The setting for this challenge is a “classic” untyped π-calculus, where (unlike
the calculi in the other challenges) names can be sent and received, and bound
by input constructs (similarly to variables in the other calculi). We define two
different semantics for our system: one that avoids explicit reasoning about scope
extrusion, and one that does not. The objective of this challenge is to prove that
the two semantics are equivalent up to structural congruence.

Syntax. The syntax of processes is given by:

P,Q ::= 0 | (P | Q) | x!y.P | x?(y).P | (νx) P

8 https://concurrentbenchmark.github.io/

The process x!y.P is an output, which can send the name y via x, then
continue as P . The process x?(y).P is an input, which can receive a name via x,
then continue as P with the received name substituted for y. The input operator
thus binds the name y in P . Note that the scope of a restriction may change
when processes interact. Namely, a restricted name may be sent outside of its
scope. Note that there is no recursion or replication in the syntax, and thus no
infinite behaviours can be expressed. This simplifies the theory and is orthogonal
to the concept of scope extrusion.

Reduction Semantics. The first semantics is an operational reduction se-
mantics, which avoids reasoning explicitly about scope extrusion by way of a
structural congruence rule. Structural congruence is the smallest congruence
relation that satisfies the following axioms:

Sc-Par-Assoc

P | (Q | R) ≡ (P | Q) | R

Sc-Par-Comm

P | Q ≡ Q | P

Sc-Par-Inact

P | 0 ≡ P

Sc-Res-Par

(νx) P | Q ≡ (νx) (P | Q)

Sc-Res-Inact

(νx) 0 ≡ 0

Sc-Res

(νx) (νy) P ≡ (νy) (νx) P

The operational semantics is defined as the following relation on processes:

R-Com

x!y.P | x?(z).Q → P | Q{y/z}

R-Res
P → Q

(νx) P → (νx) Q

R-Par
P → Q

P | R → Q | R

R-Struct
P ≡ P ′ P ′ → Q′ Q ≡ Q′

P → Q

Note that there is no rule for inferring an action of an input or output process
except those that match the input/output capability. Note also that due to
rule R-Com, the process x?(z).P can receive any name. Finally, note that rule
R-Struct allows for applying the structural congruence both before and after the
reduction: this makes the reduction relation closed under structural congruence.

Transition System Semantics. The second semantics of the system describe
the actions that the system can perform by defining a labelled transition relation
on processes. The transitions are labelled by actions, the syntax of which is:

α ::= x!y | x?y | x!(y) | τ

The free output action x!y is sending the name y via x. The input action x?y
is receiving the name y via x. The bound output action x!(y) is sending a fresh
name y via x. The internal action τ is performing internal communication.

https://concurrentbenchmark.github.io/

The Concurrent Calculi Formalisation Benchmark 9

We extend the notion of free and bound occurrences with fn(α) to denote the
set of names that occur free in the action α and bn(α) to denote the set of names
that occur bound in the action α. In the free output action x!y and the input
action x?y, both x and y are free names. In the bound output action x!(y), x is
a free name, while y is a bound name. We also use the notation n(α) to denote
the union of fn(α) and bn(α), i.e. the set of all names that occur in the action α.

The transition relation is then defined by the following rules:

Out

x!y.P
x!y−−→ P

In

x?(z).P
x?y−−→ P{y/z}

Par-L
P

α−→ P ′ bn(α) ∩ fn(Q) = ∅
P | Q α−→ P ′ | Q

Par-R
Q

α−→ Q′ bn(α) ∩ fn(P) = ∅
P | Q α−→ P | Q′

Comm-L

P
x!y−−→ P ′ Q

x?y−−→ Q′

P | Q τ−→ P ′ | Q′

Comm-R

P
x?y−−→ P ′ Q

x!y−−→ Q′

P | Q τ−→ P ′ | Q′

Close-L

P
x!(z)−−−→ P ′ Q

x?z−−→ Q′ z /∈ fn(Q)

P | Q τ−→ (νz) P ′ | Q′

Open

P
x!z−−→ P ′ z ̸= x

(νz) P
x!(z)−−−→ P ′

Close-R

P
x?z−−→ P ′ Q

x!(z)−−−→ Q′ z /∈ fn(P)

P | Q τ−→ (νz) P ′ | Q′

Res
P

α−→ P ′ z /∈ n(α)

(νz) P
α−→ (νz) P ′

Note that there is no rule for inferring transitions from 0, and that there is no
rule for inferring an action of an input or output process except those that match
the input/output capability. Note also that due to rule In, the process x?(z).P
can receive any name.

We keep the convention that bound names of any processes or actions are
chosen to be different from the names that occur free in any other entities under
consideration, such as processes, actions, substitutions, and sets of names. The
convention has one exception, namely that in the transition P

x!(z)−−−→ Q, the name
z (which occurs bound in P and the action x!(z)) may occur free in Q. Without
this exception it would be impossible to express scope extrusion.

Challenge. As in the linearity challence, we first consider the smallest relation
closed under the six axioms of structural congruence, denoted by · a≡ ·:

Lemma 6. If P
a≡ Q and P

α−→ P ′, then for some Q′ we have Q
α−→ Q′ and

P ′ a≡ Q′.

10 https://concurrentbenchmark.github.io/

Proof (Sketch). By case analysis on the first derivation.

Lemma 7. If P ≡ Q and P
α−→ P ′, then for some Q′ we have Q

α−→ Q′ and
P ′ ≡ Q′.

Proof (Sketch). By induction on the structure of the derivation of P ≡ Q, with an
inner induction on the structure of a process context and an appeal to Lemma 6.

For the proof of the challenge theorem, we introduce the notion of a normalized
derivation of a reduction P → Q, which is of the following form. The first rule
applied is R-Com. The derivation continues with an application of R-Par, followed
by zero or more applications of R-Res. The last rule is an application of R-Struct.

Lemma 8. Every reduction has a normalized derivation.

Proof (Sketch). To obtain a normalized derivation from an arbitrary derivation we
will need to check that rules R-Com, R-Par and R-Res commute with R-Struct,
and that two applications of R-Struct can be combined into one.

Lemma 9. If P → Q, then there are x, y, z, z1, . . . , zn, R1, R2, and S such that

P ≡ (νz1) . . . (νzn) ((x!y.R1 | x?(z).R2) | S)
Q ≡ (νz1) . . . (νzn) ((R1 | R2{y/z}) | S)

Proof. Follows immediately from lemma 8 and the shape of a normalized deriva-
tion.

The objective of this challenge is to prove the following theorems, which
together show the equivalence between the reduction semantics and the transition
system semantics up to structural congruence. The first of the theorems involves
reasoning about scope extrusion more directly than the other, and if time does
not permit proving both of the theorems, theorem 3 should be proven first.

Theorem 3. P
τ−→ Q implies P → Q.

Proof (Sketch). The proof is by induction on the inference of P τ−→ Q using the
following lemmata:

1. if Q x!y−−→ Q′ then Q ≡ (νw1) . . . (νwn) (x!y.R | S) and Q′ ≡ (νw1) . . . (νwn) (R |
S) where x, y /∈ {w1, . . . , wn}.

2. if Q
x!(z)−−−→ Q′ then Q ≡ (νz) (νw1) . . . (νwn) (x!z.R | S) and Q′ ≡

(νw1) . . . (νwn) (R | S) where x /∈ {z, w1, . . . , wn}.
3. if Q x?y−−→ Q′ then Q ≡ (νw1) . . . (νwn) (x?(z).R | S) and Q′ ≡ (νw1) . . . (νwn) (R{y/z} |

S) where x /∈ {w1, . . . , wn}.

Theorem 4. P → Q implies the existence of a Q′ such that P
τ−→ Q′ and

Q ≡ Q′.

https://concurrentbenchmark.github.io/

The Concurrent Calculi Formalisation Benchmark 11

Proof. If P → Q, then by lemma 9, P ≡ P ′ with

P ′ = (νz1) . . . (νzn) ((x!y.R1 | x?(z).R2) | S)

and Q ≡ Q′ with

Q′ = (νz1) . . . (νzn) ((R1 | R2{y/z}) | S) .

We can easily check that P ′ τ−→ Q′ and so by lemma 7, P τ−→ Q′.

1.4 Challenge: Coinduction and Infinite Processes

This challenge is about the mechanisation of proofs concerning processes with
infinite behaviours. This is usually connected to coinductive definitions where an
infinite structure is defined as the greatest fixed point of a recursive definition.
Coinduction is a technique for defining and proving properties of such infinite
structures.

For this challenge, we adopt a fragment of the untyped π-calculus that includes
process replication. The objective of this challenge is to draw a formal connection
between strong barbed congruence and strong barbed bisimilarity. The result
establishes that two processes are strong barbed congruent if the processes
obtained by applying a finite number of substitutions to them and composing
them in parallel with an arbitrary process are strongly barbed bisimilar. The key
issue of this challenge is the coinductive reasoning about the infinite behaviours
of the replication operator.

Syntax. The syntax of values and processes is given by:

v, w ::= a | l
P,Q ::= 0 | x!v.P | x?(l).P | (P | Q) | (νx) P | !P

The output process x!v.P sends the value v on channel x and continues as P .
The intention is that v must be a base value when it is actually sent, and this is
enforced in the semantics later on. The input process x?(l).P waits for a base
value from channel x and then continues as P with the received value substituted
for the variable l. Since replication allows for infinite copies of the process P ,
processes can dynamically create an infinite number of names during execution.

Semantics. We choose to give a labelled transition system semantics for this
challenge.

The transitions are labelled by actions, the syntax of which is as follows:

α ::= x!a | x?a | τ

The output action x!y is sending the base value a via x. The input action x?y
is receiving the base value y via x. The internal action τ is performing internal

12 https://concurrentbenchmark.github.io/

communication. We use the notation n(α) to denote the set of names that occur
in the action α.

The transition relation is defined by the following rules:

Out

x!a.P
x!a−−→ P

In

x?(l).P
x?a−−→ P{a/l}

Par-L
P

α−→ P ′

P | Q α−→ P ′ | Q

Par-R
Q

α−→ Q′

P | Q α−→ P | Q′

Comm-L

P
x!a−−→ P ′ Q

x?a−−→ Q′

P | Q τ−→ P ′ | Q′

Comm-R

P
x?a−−→ P ′ Q

x!a−−→ Q′

P | Q τ−→ P ′ | Q′

Res
P

α−→ P ′ x /∈ n(α)

(νx) P
α−→ (νx) P ′

Rep
P

α−→ P ′

!P
α−→ P ′ | !P

Note that there is no rule for inferring transitions from 0, and that there is no
rule for inferring an action of an input or output process except those that match
the input/output capability. Note also that due to rule In, the process x?(l).P
can receive any base value. Since the rule Out only applies to base values, there
is no way to send a variable.

Strong Barbed Bisimilarity. Bisimilarity is a notion of equivalence for pro-
cesses and builds on a notion of observables, i.e., what we can externally observe
from the semantics of a process. If we allowed ourselves only to observe internal
transitions (i.e., observe that a process is internally performing a step of com-
putation) we would relate either too few processes (in the strong case where we
relate only processes with exactly the same number of internal transitions) or
every process (in the weak case where we relate processes with any amount of
internal transitions). As a result, we must allow ourselves to observe more than
just internal transitions, and we choose to describe a process’s observables as the
names it might use for sending and receiving.

To this end, we define the observability predicate P ↓µ as follows:

P ↓x? if P can perform an input action via x.
P ↓x! if P can perform an output action via x.

A symmetric relation R is a strong barbed bisimulation if (P,Q) ∈ R implies

P ↓µ implies Q ↓µ (1)

P
τ−→ P ′ implies Q

τ−→ Q′ and (P ′, Q′) ∈ R (2)

Two processes are said to be strong barbed bisimilar, written P
•∼ Q, if there

exists a strong barbed bisimulation R such that (P,Q) ∈ R. Note that strong
barbed bisimilarity •∼ is the largest strong barbed bisimulation. Also, since our
processes have potentially infinite behaviours, bisimilarity cannot be defined
inductively since it is the largest strong barbed bisimulation.

https://concurrentbenchmark.github.io/

The Concurrent Calculi Formalisation Benchmark 13

Theorem 5. •∼ is an equivalence relation.

Proof. We prove the three properties separately:

– Reflexivity is straightforward: for any P , we need to show that P
•∼ P . In

order to do so, we choose the identity relation and prove that it is a strong
barbed bisimulation. Condition 1 follows trivially by definition. Condition 2
follows coinductively since we must always reach identical pairs.

– Symmetry follows immediately by definition.
– For transitivity, we need to prove that if P •∼ Q and Q

•∼ R then P
•∼ R. In

order to do so, we prove that the relation R = {(P,R) | ∃Q such that P
•∼

Q ∧Q
•∼ R} is a strong barbed bisimulation. Let us assume that (P,R) ∈ R.

Hence, there exists a Q such that P
•∼ Q and Q

•∼ R. Clearly, if P ↓µ then,
by P

•∼ Q, Q ↓µ. And, by Q
•∼ R, R ↓µ. Moreover, if P τ−→ P ′ there exists Q′

such that Q τ−→ Q′ and P ′ •∼ Q′. And also, R τ−→ R′ with Q′ •∼ R′. Finally, by
definition of R, (P ′, R′) ∈ R.

Unfortunately, strong barbed bisimilarity is not a good process equivalence
since it is not a congruence, hence it does not allow for substituting a process
with an equivalent one in any context. For instance, the processes x!a.y!b.0 and
x!a.0 are strong barbed bisimilar, i.e., x!a.y!b.0

•∼ x!a.0. This is because x!
is the only observable in both processes and they cannot perform a τ -action.
However, in the context C = [·] | x?(l).0, the relation no longer holds: in fact,
x!a.y!b.0 | x?(l).0 ̸ •∼ x!a.0 | x?(l).0 because the left process can perform a
τ -action such that y! becomes observable, whereas the right process cannot.

Strong Barbed Congruence. In order to detect cases like the one above, we
need to restrict strong barbed bisimilarity so that it becomes a congruence, i.e.,
we have to consider the environment in which processes may be placed.

We say that two processes P and Q are strong barbed congruent, written
P ≃c Q, if C[P]

•∼ C[Q] for every context C.

Lemma 10. ≃c is the largest congruence included in •∼.

Proof. We first prove that ≃c is indeed a congruence, i.e. it is an equivalence
relation that is preserved by all contexts. Proving that ≃c is an equivalence is
easy; to prove that ≃c is preserved by all contexts, we show that ∀C : P ≃c Q
implies C[P] ≃c C[Q], by structural induction on the context C.

To prove that ≃c is the largest congruence included in •∼, we show that for
any congruence S ⊆ •∼ we have S ⊆ ≃c. Take any P,Q such that P S Q (hence,
P

•∼ Q): since S is a congruence by hypothesis, this implies ∀C : C[P] S C[Q]
(hence, C[P]

•∼ C[Q]). Therefore, by the definition of ≃c, we have P ≃c Q, from
which we conclude S ⊆ ≃c.

14 https://concurrentbenchmark.github.io/

Challenge. The objective of this challenge is to prove a theorem that shows
that making strong barbed bisimilarity sensitive to substitution and parallel
composition is enough to show strong barbed congruence. To prove the theorem,
we will use an up-to technique, utilizing the following definition and lemma. A
relation S is called a strong barbed bisimulation up to •∼ if, whenever (P,Q) ∈ S,
the following conditions hold:

1. P ↓µ if and only if Q ↓µ.
2. if P τ−→ P ′ then Q

τ−→ Q′ for some Q′ with P ′ •∼S •∼ Q′.
3. if Q τ−→ Q′ then P

τ−→ P ′ for some P ′ with P ′ •∼S •∼ Q′.

Lemma 11. If S is a strong barbed bisimulation up to •∼, (P,Q) ∈ S implies
P

•∼ Q.

Proof. We check that •∼S •∼ is a strong barbed bisimulation and is thus included
in •∼.

Theorem 6. P ≃c Q if, for any process R and substitution σ, Pσ | R •∼ Qσ | R.

Proof. Since ≃c is the largest congruence included in •∼, it suffices to show that
if Pσ | R •∼ Qσ | R for any R and σ, then C[P]σ | R •∼ C[Q]σ | R for any C, R
and σ. We proceed by induction on C.

C = x?(z).C ′ Let S = {(C[P]σ | R,C[Q]σ | R) | R and σ arbitrary} ∪ •∼. We
can easily check that S is a strong barbed bisimulation, noting that •∼ is
preserved by restriction and is contained in S.

C = C ′ | S Then by the induction hypothesis,

C[P]σ | R •∼ C ′[P]σ | (Sσ | R)
•∼ C ′[Q]σ | (Sσ | R)

•∼ C[Q]σ | R

for any R and σ.
C = (νz) C ′ Then by the induction hypothesis we have C ′[P]σ | R •∼ C ′[Q]σ | R

for any R and σ. Without loss of generality, we assume that z /∈ fn(R)∪ n(σ).
Then, using that •∼ is preserved by restriction, we have

C[P]σ | R •∼ (νz) (C ′[P]σ | R)
•∼ (νz) (C ′[Q]σ | R)

•∼ C[Q]σ | R
C = !C ′ Let S = {(C[P]σ | R,C[Q]σ | R) | R and σ arbitrary}. Using lemma 11,

it suffices to show that S is a strong barbed bisimulation up to •∼. To this
end, let

A = C ′[P]σ, A′ = C[P]σ

B = C ′[Q]σ, B′ = C[Q]σ,

noting that A′ = !A and B′ = !B.
Suppose R | A′ τ−→ S for some S. Then we can show by a case analysis on the
derivation of this transition that there exists a T such that R | (A | A)

τ−→ T
and S

•∼ T | A′. Using the induction hypothesis twice, we note that R | B′ •∼
R | (A | A) | B′. Since by rule Par-L, R | (A | A) | B′ τ−→ T | B′, there must
thus exist a U such that R | B′ τ−→ U , U •∼ T | B′ and S

•∼S •∼ U as required.
The proof for R | B′ τ−→ S is analogous.

The remaining cases are similar.

https://concurrentbenchmark.github.io/

The Concurrent Calculi Formalisation Benchmark 15

References

1. Andrew Barber. Dual intuitionistic linear logic. Technical Report ECS-LFCS-96-347,
University of Edinburgh, 1996.

2. Hendrik Pieter Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume
103 of Studies in Logic and the Foundation of Mathematics. North-Holland, 2 edition,
1984.

3. Robin Milner. Communication and Concurrency. Prentice-Hall, USA, 1989.
4. Davide Sangiorgi and David Walker. The π-calculus: A Theory of Mobile Processes.

Cambridge University Press, USA, 2001.
5. Vasco T. Vasconcelos. Fundamentals of session types. Inf. Comput., 217:52–70, 2012.

	The Concurrent Calculi Formalisation Benchmark

